AD-754 109

RECENT DEVELOPMENTS IN SAIL. AN ALGOL-
BASED LANGUAGE FOR ARTIFICIAL INTELLIGENCE

J. A. Feldman, et al

Stanford University

Prepared for:
Advanc¢ed Research Projects Agency

National Science Foundation

November 1972

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Roya! Road, Springfield Va. 22151

STANFORD ARTIFICIAL INTELLIGENCE.PR‘OJECT
MEMO AIM-176

STAN-CS-308

RECENT DEVELOPMENTS IN SAIL

AN ALGOL-BASED LANGUAGE FOR ARTIFICIAL INTELLIGENCE

BY

J.A. FELDMAN
J.R. LOW
D.C. SWINEHART DERES

R.H. TAYLOR ‘L{'ﬂ"’“ | ~1

AD754199

}’ JAN £2 1973
N 1
U

ULJLJL._“.J R
C

SUPPORTED BY
ADVANCED RESEARCH PROJECTS AGENCY
ARPA ORDER NO. 457

NOVEMBER 1972

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

U § Department of Com
Springfield VA 771 ﬂ

A2

Y - o fer public release;
Ty owita1tian ITnlirmitad

STANFORD ARTIFICIAL INTELLIGENCE REPORT NOVEMBER 1972
MEMO NO, AIM-176

COMPUTER SCIENCE DEPARTMENT
REPORT NU, 378

Recent developments

in SAIL
An ALGOL-pysed Ignguads for Artiffg!

cal Intelllgence
BY

J+ A, Fe)dman
J. R, Low
C. Swinehart

0,
R. H, Taylor

ABSTRACT

New features added o SAIL, an ALGOL based language for ¢the POP=~10,
ap€ disgcussed, The features Includey procedure variab|es; multiple
DrOc€sSes; coroutinesy a Iimited form of backtracking; an event
rechanism for Inter-process communication; and matehing proceduras, a
new way of searching the LEAP associative data base,

KEYWURDS

Artificial [ntelligence Languaces, ALGOL, SAIL, LEAP, multis=tasking,
events, assoclative data structures, backtracking, coroutines,

progressive deepening,

The views and conclusions containad In this document are those of the
authors und should not be Interprated as necessar| |y representing the
official policles, eolther expressed or Implled, of the Advanged
ResearCh ProJects Agency, of the Natlona| Sclence Foundatlon, or of
the Unlted States Gaovernment,

Thls regearch was supported In part by the Advanced Researgh ProJests
Agency of the gfflce of the Secretary of Defense under contract SO~

183 and In part by the Natlonal Sclence Foundation under contract GJ=-
776,

Recroduced In the United States, Avallabje from the Nationa|
Technical Information Service, Sprinafield, Virginla, 22151,

-

INTRODUCTION

Progress In Artificlal Infelllaonce hae trldltlona*ly been
accoMpanied by advances In speolal purpose programming teohniques and
languades, Vietualfly ajl of thls devejopiient has been conoentrated
I'n languages and systems orlented to |ist processing., As the efforts
of Artificlal Inte||faence researchers began to turn ?rom purely
symboilc problems toward Interaction wlth the real wor!d, certain
features of a|gebrajo languages beoame deslrabie, There were several
atteMpts(notably L]SP2 and FORMULA ALGOL) to combine ¢the best
features of both kinds of language, At the semo time, deslgners of
ajgebralo [anguages began to Inglude features for non-numer lcal
computation, No new general purpose |anguage wlthout some sort of
list prooessing fac!|lty has been sugoested for severa) yvears, _We
have followed a tack somewhat dlfferent from elther of these In the
des|Gn of SAIL and in It¢s subsequent modificatlons,

The starting oolnt for the development of SAIL was the reocognized
neea for & |anguage Incorporating symbolic and_ algebralc
capabillties, oprimarliy for Hand~Eye reesearoh, The probjems are
somewhat similar to those In Computer Graphlos and one of us had Jjust
develored a |anguage, LEAP [4], fop such applloations, APter an
attempt to honest|y evajuate alto:natJVe teohn]ques, we d’cfdgd that
the aysoclative processing features of LEAP Were the way to go, There
are Imbortant differences between LEAR and the flrst SAIL, (nr'marlly
In [nput=output, strling manipulation, and lmolomentationf. but these
differences are not relevant here, It |s essentiaj|y thls syscem for
the POP-1@ which s dlstributed by [DECUS and |s belng uased for
Aptificlal Inteiifaence and other research I[n a number of

laboratorles,

This uriginal SAIL met our needs for mbout tWe years before geaulr{nq
serious c¢hange, Then We began te¢ face the problem of putting

together a hand-eye system whioh was mugh blgger than the available
maln memory and which did not lend [tself to a statio overjay
structure, Our sojution Invo|ves g number of IunGUaag_ndd!tlgns
which faol|ltate the treatment of Jobs under the tIme=sharing system
8s a set of cooperating seauentlal progesses, and has been described
In 5]y The three maln additions wepe t a monlitor for user oontrol
and debugging, a shared data facl|lity; and the Introduction of
messade procedures, The shared data faolllty makes uee of the secand
relocation reglister of the PDP~12 to a||ow Jobe to mocess a common
gjobal data area Jn a natural and efflolent mamnnar, The message
procedures are the maln meohanlism for asynohronous oommunication and
oontrol between Jobs, A message prooedure |s g procedure In one Job
whlich can be fnvoked from another Job, Control Informatlon
assoclated wlth the Invocatlon can provide the effect of
subroutines,coroutines,parallel oproceeses,events, and a varlety of
other disciplines, These muiti-tasking modifioations to SAIL have

In programming non-getefmlnlstlc algorlthms, parallel| processes, wl|l
be dlsCussed late, in thls paper,

In genera| the state of a SAIL oomputation Includes <the gurrent
contro! environment, the inputi and outout whioh have Deen requested.
the contents of the LEAP associative store and the contents of al|
variables, New SAIL has features which wl|| help handle the j|ast of
these components: the oontents of varlables,

We norMa| |y do not want to have the vgluss of all Vlrl?blls “backa?-
up" wWhen wWe switch between altegnatives, One reason T that It !s
often ugefu| for one alternative to communicate oertal~ =imcas of

Informetlon It has acaulred to tMe other alternatives, This
Informetion |s usua|ly gaved In certaln variables, If we backup thoss
varlables, we lose the [nformatien, Another reason for roat backingaus
all varlables Is that often only a smal| subset wl|| have meaning for
more than a singje alternative, and It Is very costly tc baok up
large amounts of data whloh may not be rpelevant focr the other
ajternatives, Therefore wWe have Implemented ways of sav]nd the
values of speclflc varlables and then restoring them at a jater time,

T ate= h n tw ents| M

and s§s$an?"é28n“’8i %Rl:? 1308289,0n, tHg, N8Ny, 25 Eament] REMEMBER,

"context™, A context oonsists of a set of rofOrbnoes to variables and

the|r valyes,

We save the contants of varlables by means of REMEMBER statements,
REMEMBER (1,J,aL3]) IN contexti)

Thls statement wou|d gave the va|ues gf "[w, " jw "a (31" In the
context npamed “"contexti", If any o? thos; va;lableg had been

previousiy saved [n "contexti", the o|d values Would be |ost,

An alternate form of the REMEMBER statement Isi

REMEMBER ALL IN oontextl) A
The current value of each varlable which has been rememoered in
“conteXti" would replace the vajue that was preVlously stored there,

The RESTORE statemant also has two forms, The flprst has an argument~
|st.

RESTORE (j,af3]) FRCM contextis
| W d a X f :] erpor
Tnd?cat?gA |f°°a5§“w8?2"n§% Nrgaem§2§.§5°“w?Qﬁ?n tht °l38ta§¥. ’Fﬂ&
values gsaved for thgse arguments "remembered®, would be restored to
the appropriate variables,

enéblied pesearchers to ;ssomblo,nnd modify Iapge oolleotlons of Jobs
with a minimum amount of attentlqn to system peobiems,

A nymbepr cf factors _have ?8 bined recentiy to oause us to .make e
second set of major mod Tont ons to SAIL, The mult?-tnsk-ng
facliilties of the second SAIL were goen to bo at |oagt as usefu!
within a single Job as they were goross Jobs, In addition, the
abl {1ty to assembiv jarge oojleotions uf routines brought us to the
Point of faolng one of the oore opobiems of Artiflolal Intel|igence -
what Is the rlght sSeauence of aotlions for carrying out e __given task
'n a partioular environment, This strategy problem Is ourpentiy very
pobular and 1s the driving feree behlnd many of] t?l recent
dove loomant In lenouegey for Artifloly Intel [1gence, Our view of the
ereble® |s somewhat unorthoder and meplts some d|weunslen,

froplem gaiving for an entity whigh deuls wlth the r!tl warld In
fravoht wlth uncertalnty, The state of tis World gan not assumed to

o krown = |In fuet, one of the maln goals of & strategy must be to
aln engugh Information %o Carry OUt the taak, An ddlt anal orablem
Sria®s |n resource allotatlon) even |7 an Exhauntive search of the
snvironment wii| ylold w selutlon, |t may not do so at an acceutab|e
so8t, Conalderationa of thils sort ocause us o v]ew _the strategy
eroble™ ns Inherentiy Invoiving numerlon| sst|mates of orotabl|lties,
Go%t®, etc, A como|ote dlsgussien of thess Issuss | beayand the
3gop® of this paper , but the recent SAIL mod|flontions have bean
Infiuenge. by ocur model of the steategy oroblam,

uHr recant Il?ﬁU|gl work ham Dgen (ntender to facl||tate the dos;Gn
oy s es fo

Arograms for tme construction ‘and execution of stratesl
Interaction with the real worid, The facl|itlies are boln? aopiled to
other problems, but we wiil ooncentrate on the or glnal_ theme,

However ths language design effort was conoerned wlth exp-nding the
PoWer Of SA[L as a general PUrposSa® |anguage as opposed %o develon|ng
@ speclal purpose system, One orition| deglgn oonstralnt was that the
features not entall large hidden overheads or appreclably dearade the
performance of programs not making use of them, We be|leve we hpve
found a set of features wnioh meet our deslgn _goais, The major
additions aret packtraoking, procedyre variables, matohing
procedures, and a general multi=tasking facl!|yy,

STATE SAVING AND packyr

Inm orde®e to try sevara| ﬁTrFtrlct llt,rnut1vt atrateplen |t @ E'tln
Recessary to save the current stmte of the nnnnuiltrﬁn, Thus, | the
flrat sttamot dows not gucosed, wWe mey "baok UE" and try gne of the
ether miternstives, We may wise switoh Getwesn Aigapnat|vas,
sontinling with one only untl] It no jenger seers the mogt promleing,
Sut retalning the gotlon of resumlng |t |ater If the other
R|ternatives de not mrove to be sat|afectory, Another technloue used

(%)

y-

w

In programming non-geterminlistlc algorlthma, parallel processes, Wil!
be glsCussed latep in thls pap®r.

In deneral the state of & SAIL computation fncludes the surrent
control environment, the Input and output whioh have tesn requestad,

the contents of the LEAP assoclative etore and the contents of all
varlables, New SAlL has features whigh will help handle the [last of
these ctomponents: the contents of varlables,

We normally do Mot wamt %0 Naye the leulu of all var'gbins "b-uh-?-
Wp™ Wham wWe sWlteh betwean gl/teegnativas, 0N reascn that It I»n
aften usaful for aone alternative to gommunioate nirtlTH olegesn of
Information 1t hag scgulred %o the other sliternatlves, This
infarmation la usya|ly gpaved in certaln varlab|ee, |f wWe backup those
variables, we lose the 'n?urMLtlun. Another raason for not backlng-uo
s/l varisples la that often cnoly m omal| subset w|11 heve meaning for
mors than & singie alternative, and It Ia veary ¢ontly to back up
larg® amounts of datm whlgn may not De ralevant for the other
n|ternatives, Thepefape We RPave Ima|emented ways of aaving the
vglues of specific yarigbles and then rastoring 4hem at n |ater time,

The state= h ed W W . onts| MEMBER,

Sl ﬁEs?ﬁRE?Véﬁghmgi anlen $8,0888%3": a8l syatamental RERGNRE A

"context™, A context oons sts of a set of rofurhncas to variables and

thelr values,

We save the contents of varlables by means of REMEMBER statements,
REMEMBER (1,J,aL30) IN contextli)

Thlg statement wouid save the vajues 3f wjw, wgn, vaf3)" In the
context named "eonteaxtl", 1t any o0 thege variablesg had been

previously saved In "contexti”, the o|d values would be |ost.,

An alternate form of the REMEMBER statement lst

REMEMBER ALL IN oontextli . A
The current vajue of each varlable whloh has been remembered In
ncontexti" wouid replace the vajue that was prevliousiy stored there,

The RESTORE statement a|s0 has two forms, The flrst has an argument-
8¢

RESTORE (J,al3]) FROM contextls
| would h f ¢ error
Tnd?Cat?gA |fsegE§ w%?St‘ﬁg nraaem§98-35°“WYQ§?n !Rgt géggtegﬁ. '?%5
values saved for those arguments "rememberad"h, would be restored to
tne appropriate varjables,

The other fopm of the RESTORE statement !st

RESTORE ALL FROM contextis

: ‘ .
mgdwggAgexgestOre the contents of all varlables saved wlthim the

These negw feanres seen to0 provide the .most important ?tures of
3tate-Syving without the Igr3de overhead Imposed py gUtomgtlc baokuo

of the entlre state onr Incremanta| state=saving as |mplemented In
some other programming systems,

=

L=

LEAP

SAIL contalns an agsoclative data system oajjed [EAP wgloh |s used
for syrbollo computations, LEAP |Is a ocombinatjon © yntax and
runtime subroutines for hand|ing |tems, sets of ?tems and
agsoclations,

during exeoution from a pool of - [tems by usimg the function NEW.
lters may be stored in varlables {ltemvars):, be members of sgt?ombe
ejerents of ilsts or be associated together ¢to form tripies
tassoclations) within the assoclative stors,

An |tem |s similar to a LISP atom, ‘toms may be deolar®8d or obtained

A set Is an unordered collection of distingt Items, Items _may be
Inserted Into set varfables by "PUT" gtatements and removed from set
variables by "REMOVE" statements, Set expressions may_ afso be
assiogned to set variables, The slmplest set exoresalon is of the
formt

{(itemi, 1tem2, ltem3 ,,,)

whigh represents the set oonsisting of the denoted [tems, HMore
oomplicated set expressjons Invoiving set functions, _set unjon,
subtracticn and Interseotion are also provided, Sets are stored in a
oanonical Interna| fopm which allowy us to carry out such operatiogns
as interseotion, union and oomparison In a time provortlonal to the
lengths of the sets lnvolved,

Sets are deflolent In some appilcatlons, though, becausg they are
Unopderecd, Thus wWe could not oas?l# try different a|ternatives [n
order of thelr expected utillty, To remedy thie, as wel| ae provide a
mechanlsm for oreation of parameter |ists to Interpretiveiy cal)ed
spocedures (se® PROCEDURE VARJABLES below), SAIL now oontalns a data-
type ca|led "|!str, A |1st |s simpiy an ordered seausnce of [tems, An
Iter may appear more thanh once wl?h‘n a |lst, w!gt,ogcrat ons
Inciude Inserting and removing speolflc lteme froma Ilst variable by
Indexed PUT and REMOVE statements, LIist varlables may also be
asslaned |Ist expressions, the simpleet of which Is of the formi

((ltemi. 'temal |t9m3 qoo’)

\

which r7oros nt the'?:pl olt 7eoueno| of den fod {tems, .other Iist

expp®sslions [nciude t functlons, ocoacatenation, and subj|ists,

Teip|es are orderegd . three_tupiss of [tems, gnd. may _themse|vas be
considered [tems and ooour Tn subsequent assocjatione, They are added

to the assoolative store by executing MAKE statements, For example,
MAKE use ® plani = taski)

6

The three |tem components of an assoclatlon are refered to as ghe
vateribyte”, the "oblect's and the "yalue" respectively, Assoclations
may be removed from the store by using ERASE statements such asi

ERASE use @ planl 2 ANY

Each |tem other than those ropresentind assoclations may have a DATUM
which Is a scalar or arr@y of any SA]L data-type, The data=type of a
DATUM ray be checked during execution, - DATUMs are used much as
variables, For example!

DATUM(I1t) « 51
would cause the datum cf the item "It" to be replaced with "5",

SAIL contalins a oom j|e=time magro tac!|lty which allowg such things
as string substltut?on and condltiona| compilation, As i8S the custom
of manY SAlL progGrammers we wlll use the macrO nan ¢o stand for the
agring "DATUM", Thus ¢the above example would appear ast

atle) « 51
PROCEDURE VARIABLES

1+ |8 oulte natural Ilm an In Irnr?t-r to I|!nT for the lituu;iun af
program ganerated sgoudnces 0 gotiona, This |3 an mporiant faature

for artificlal |neel ! |gencs applications and I8 not anlly muda
avalladje for compl|eg proarams, In new SAIL, the ﬂlnarutTnn af such
sgautnces |s fac)i)taged DY & oracadure variabi® machenlam wnigh flta
In quite nlgely Wlth the masaciative senrch features of the |anduace.
Yhesd® procedur® variables are craatdd &% runtime from jtems Dy
statements of the form

ASSIGN(<1¢em expression>.<procedure specificationd)
whepe

tion> i <procedure 1d> |

<procedure speclficati
DATUM(<procedure [tem expression>)

For Instance,

ASSIGN{xxx,baz)
wou|d cause the datum of ltem xxx ¢to contaln a description of baz,
togethe:r with a polnter to baz’s current environment, Simljariys the
stagenent

ASSIGNCyyysa(xxx))

~4

Would cayse® yyy to be made Into & procedure item contalning the same
Informaglon ag that In xxx,

In addition to dynamlcallf speolfying what procedure to execute, one
would also |ike a convenlent way to dypamlcajly soecify an argument
Iist for a procedurv call, Thls faolilty 1!s provided by the APPLY
mechanlsm}

APPLY(<procedure speciflcaticnd,<argument |ist>)

whepe <argument Ilst > Is any SAIL |Ist and may be omltted if the
procedure has no parametere, For examole,

APPLY(fo00)
AppLY(3(xxx),|istl)
APPLYy(3CAPPLy(yyy)) s {{x,ys2})}

APPLY wuees the Iitems In the argument Ilet, together wlth the
environrent information from the prooedure item (or from the ourrent
environrant, |f the procedure |{s pamed expllcltiy) to _make the
eppropriate procedure call, If the ocalled procedure oroduces a
value, that value wi|| be raturned ae the value of APPLY,

Prooedure [tems opermit a great deal of fiexjblllty, For Inetance,
the use®, can say things |ike

FOREACH x | x¢actlons A useexzfastening do
BEGIN
APPLY(e(x),((boardl,board2)))} L
IF together(bokrdi,board2) THEN GO TO dongit)
ENDJ

donelt!

This would searoh the _set "ao*lons” for Tny.o7oooduroo w?lch have
been asserted to pe usefu| for fastening things tcgether untl| elther

the list e exhausted or the task |s successfully completed,
MULTIPLE PROCESSES

The control strucquo,of SAIL was orlelnaily very much |lke ¢hat of
Algo! 62 ~= that |s to eay bjeck structured apd orooedure orlented,
Althoudh this struoture |s adeauate for many problems, there are some
cases In whioh It Is wuncomfortably restelotive, In hand-eye
appiloations, for Instance, there are freauently moduigs of code
which are more or less mutuai|y Independent but that wish to c¢all on
each other for various services, Simljar!y, one may wlsh to
Investigate several possible strateglee ¢t once, wlth the _results of
one computatlon perhaps influencing the couree of cthers, In sueh

cases, it |s much more natura| to think of (and write) these modujes
as co-ro,t!nes or JIndependent orocesses rather than _as nested
procedure calls, To some extent, message procedures provided the
desired facl|itles, w]th each Job acting as a secarate process, This
solution has some rather severe drawbacks, since the overhead
Involved In swWltching oontrol from procéss to process and In
Interprocess communication |s so high that close Interactlon becomes
prohlbltive|y expensive, One of our goals in providing new control
facllltlies was to make possible the close cooperation of many small
to redium slzed processes within a single Job without Imoosing an
excessive overhead ejther on oldesty|e progedural opregrams Orf On
users of the shiny new features, In dolng thls, we wanted to retaln
the block stpucture rules of Algol, slnce these pules are gendpa|ly
famiiiar to prodrammars and provide a useful means of determ?nlng
which data |ls to be shaped,

y |
AR LI M HIILIU R LIRS 1) F?Sﬁ“‘$é°§6758? mpehanien
a process |3 essentia|ly a procedure activation which has been dlven
lts own pun time stack and which thus does not have to return before
the ppocess that Invoked It can continue, SAIL orocedures normaily
make up-leval refergnces via a ‘"statlc" (lexlcal nesting) chaln
malntalred for that purpose In the stack, Whem a orocedure s to be
cal|ed as an Independent process, a "process" routline flest gets
space for a new stack, [t then sets up approoriate Dprocess control
varlables In the mew stack ar®a and In the "parent", Flnally, the
ppocedure Is Invoked using the new stack, when thls oprocedure lIs

entered, |t Wll! set up Its statlc [Ink by looking back _along the
static chain of the caillng process untl| it finds an activation of
lts |exical parent, Thus, d!fferent orooesses wi|| share data

belonging to thelr common ancestors,

Mary of the appllicatlions which we have considered do not permit us to
predlct just how many subprocesses a process might wish to soawn or

reaulre that severa| processes be |nstantfated usling the same
spocedure on dlfferent data, Therefors, we have chosen to "name"
proc®sses by assigning them to LEAP ltems, rather than by usino
procedupe mames or some speclal data typa called “"process”, Tais
approach has the agded advantage of allowlng complex structures of
srocesses to be bul|t ugc using the mechanlisms of LEAP, New procasses
are ctréated by statements of the formi

SPROUT(<1¢tem expression>,<procedure calld>,<optlons>)

whepe the ltem specified by <ltem expressiond> |Is toc be Jsed as tne
sroc®ss name, the <procedure call> te]ls what thls process is to 40,
and <optlons>d s an integeér which s used to speclfy now certa:n
process attrlbutes are to be set un, (1t the ¢ootions> paramater Is
omitted or onlv cartlally spacified, SAIL wll| provide defayit

e

values), Fop 'nStanYO' @ procedu;e to nall two boards together might
contaln a sequence |lke

!
ITEM 01,p2,p3;
]

!
SPROUT(ol,grabthandl, hammer)) g
SPROUT(p2,9pab(hand2,nal|¥)}
SPROUT(p3, lookat(tvi, boarde))
!

:
JOIN((pl,p2,03))) _
pound(hammer,nal|,boards)}
:

:

In this case, Orab(handl,hammer) would be exéouted as process pi,
9rabthand2,nall) woyld be exeouted as procees p2, and
lookat(tvi,boards) wou|d be exeouted as procese 3, The process
erOatl?o them continues on {ts way down to the JOIN statement, [n
general,

JOIN(<set>)
Oaus®s the process exeouting It to be suspended untli al| ¢he
processes named by the <set) have terminated, Thus
pound(hammer,nal|,boarde) Wwill not be cajled untl| P1, n2, and p3

have all terminated, In our eaxamoie, both SPRQUT®d orocesses gnd the
origina| orogess woylg theoretioalbly pun In Parallnl, 1n fact, thle
ls not posslble with & slngle crocessor, [net ad, the 511? runtIme
syatdm Includes o wghedulep that degldeg high process_ (s %o be
Jr8cUtAd at any glven Instant, Each frocess ls glven & prlerlty and
time quantum and mpy be In ones of ur statest "runnlng®, "resgyn
Elyms runpabie), "suspended”, op "tlrllnqtid", The schedujer, wWhich
ls Inveked slther by a olook 'ﬂtIFPUE! or by an wxpllelt ey by tha
Wa®r, Uses a simpie raund roblin aloorithm to ITltrTbutl Bervice amang
the nighest priorlty ready orocesses.

When a prooess |s SPRQUTed, the eystem assigns |¢ ?. standard defay|t
Prlority and time gquantum, unjess the .User epeolfles otherwliee by
8pdropriate optlons, The SPROUTed prcoees usyallyY _bacomes the
FURRING prooess, while the SPROUTINg process reverts to ready etatus,
Unless some other optjon (s speolfied, For Inetance, sucpose we have
Some prooedure "wanger" whleh seapohes a data base or the ea| world
at rghdom for ootontl.lly useful opJlects., Then wy mfcht weite
sSomgthing |iket

R T LA EETTE M VYT TR PO
ip

The cuprent bprocess wouid oontinue to runs and wapderer would
langulsh In ready gyatus unt!| everything of highe, p.lo; !ty had been
suspended,

Ppocesses mauy be suspended or terminated via
SUSPEND(<process |tem expresslond)
and
TERMINATE(<process Item expressiond)

SAIL provlides system

Y
aquantum,

which do Jjust what gne might expect, Simliar|
functlions for changing a proocess’s priorlty or
Co-poutin style Jnteractlions are facl|itated by the use of the
RESUME construyct:!

Xx~RESUME(<process |tem expression>,<return va|ued,<ootlons>)

where <optlons> Is agaln cptlonal, The usual effect of RESUME Is to
taus® the currentiy running prooess to be suspended and the prccess
spec!fled vy <process Ttem expression> to become running, [f the
Process belng resumed had suspended ltse|f by means of a resume
statement, then It wil| recelve <return value> as the value of the
RESUME, For Instange,

PROCEDURE too|_getter(ITEMVAR too|_type)!
BEGIN
ITEMVAR tool}]
FOREACH tool | tool €& tool.poX A typeetoo|Ztool_type DO
RESUME(CALLER(THIS_PROCESS), too)}
END}
!
SPROUT(tgeNEW, too|_getter(screwdriver), SUSPEND_HIM)
DO sd«RESUME(t9,NIC) UNTIL flts(sd,scran1)}

TERMINATE(tg);

In this case, the tool getter prooess "tg" wi|| be 1n|tla{izod and

Immediate |y suspended, Then, the RESUME(tg,NIC) wl|| wake It up to
fing one sopewdriver, which wil| be assligned t0 |temvar "gd" by the
RESUMEC(CALLER(THIS_PROCESS)»too), (THIS_PROCESS and

CALLER(<proc!d») are system supplled routines that returr the crocess
ltems for the current|y running process and for the prooess that last

awskened process <procld>, respeotively,) Later on, we wli| discuss a
somewhat cleaner sojutlon, using matching procedures, to +he probjem

11

-~

useg for thils lllusfr tlon, We Wl|| also show how the Intarprooess
commun!cation fa.il{tles of the language may be useq to hangle the
problem Qf what to do if togl-g.tter runs Qut b' toolSO

FOREACH STATEMENTS

The standard way of gearohling ths LEAP asspolat!ve store Is the
FOREACH statement, A FOREACH statoment consists of a "bindlng Iiat"
of Itervars, an "assoclat/ve context" and a statement to be Iterated,
Conslder the fo|lowing example,
FOREACH 9pspsc | parent ® ¢ 2 p A parent ® p = gg DO
. MAKE grandparent ® ¢ & gp}

In this example the bindling=|ist consists of the |temvarse "op", "p",
"c", The assoclative contaxt conslsts of two "elements", "parent e ¢
= p", and "parent e p = gp", The statement to be Iterated |s the
MAKE statement.

Inftlally all three Jtemvars are "unbound", That s, they are
considered to have no Item vajue, SInos "p" and "c" are unbound, the
elerent "parent ® ¢ = p" represents an assooclat|ve seargh, The LEAP
Interpreter Is Instrugted to look for triples oontaining "parent" as
thejir attribute, On flnding such a triple, the Interpreter assians
the object and va|ue components to "c" and "p" respectively, We
contlinue to the next element "parent ® p = gp", [n this element thare
ls onlY one unbound Itemvar, "gp","o" |s not unbound even thouoh |¢
s In the binding |{st because |+ was bound by a preceding ejement,
A search s made for triples ,Ith "papent" as thelr attrlbuto and the
current binding for “p" as thelr obJect, If such a %riple" Is found,
Its vajue component Is bound to "gp" and the _MAKE statement |s
executed, After execution of the MAKE statement, _the LEAP
'nterpreter Wil| mback up" and attempt to f1nd another bindlng for
"gp" and then execute the MAKE statement agaln, When the Jnterpreter
falis to find anothgr binding, It bagks up to the preceding element
and trys to find other blindings for "o" and "c", Flnal|y when aj|
triples matching the pattern of the flrst e|ement have been tried,
the executlon of the FOREACH statement |s oomglete,

in old SAIL, FOREACH e|ements oonslgted of elther trlple searches,
set membershlp, or boojean expressfons not dependant on unbound
ltervars, Only triple searches and set membershlp were aljowed to
bind an unbound ltemvar,

ﬁ?scsé&%e.°°xtaéeah?ns°"m:szdaﬁ.°lgdles.n}f:'rw: 98408002 ALE
Which may have zero gor more BINDINGCwritten as "7" ltemvars as
formal parameters, These parameters are not necessar ||y bound at the
time the procedure s culled, [f the procedure oanno% flnd bindings

ERETI
Y

12

for |Its wunbound BINDING parameters, |t FAllLs, causing the LEAP
Interpreter to back up to the previous e|ement w?thln the associative
context of the FQREACH, 1f It SUCCEEDs, blindings for the unbound
marameters wil| be returned, Tbe matohlnd procedure 1s aotually
SPRQUTed as a coroutine nrocess, SUCCEED and FAIL are essentlajly
forms of RESUME which return oontrol to the cailer with <the values
TRUE and FALSE respaotlvely, FAIL a|so causes the matohlng procedure
procesS to be TERMINATEd, When tbhe matchling procedure Is callod by
"packup”, It Is merely RESUMEd, Thus, the entire environment in terms
of the procedure’s jocal varlubles, stack, etc,. Is the same as when
the procedure executed the previous successful return, The matohfnq
procedure may continmue from the polnt at whioh It 1eft off,
generating new bindings for Its unbound parameters, In many respecsts
matchlng procedures are siml|lar to the]PL=V "generators" whloh have
apceared In varled forms In other Prohlem~solving |anguages,

To ald in =zhe plin lng operations we have orovided predlcates to
determine |f a speciflic parameter |s unbound for this ocal| of the
procédure, We a|so have Introduoe a new form of the FOREACH statement
which condltlonally adds |temvars to lts binding I1st, Conslider ths
the following exampje of the new formi

MATC I G CEDUR) getter(ITEMVAR too 00 e))
BEG] gREAgH ?goglf ?to -type T too| € tool '60t | -stoi2
typOOtGQIEtool-type D0 SUCCEED)
FATL)
END;

The binding || f the FOREACH wou ontaln "$o00|” o et "tool®
wWere unbovwd. gf ? arhy 1t would ooAga? ‘tool v:g" ?* r¢ool_ ygl"

were unbrund, The action of the matchlng procedure Is to fTnd a tool
I'f the tool |s wunknown but the type Is knownj find the type If the
too| Is known but the type s notj verlfy that the too|_Is of the
raaulred type If both are knownj} or search through the toolbox and
return tool,tool_tyoe palrs If nelther tool nor type Is known, The
actual| semantlcs is determined by which, if elther, of the parameters
are bound,

UnfortUnately In general, matching procedures wlth more than a single
potential| |y unbound parameter are not so easy to ccde, Ths user may
have t6 provide up to 2¢N d!fferent code sequences to hand|la the
var|ous eombinations of N BINDING |temvars,

To Illustrate one_ class of uses ?tchlnq proo?duras let us
conslder the following oproblem, We are given a sat o cube shaped

blocks of varying slzes and are reauested to plck a subset of the
blocks such that when stacked they wil| form a tower ¢f a given
helght, Assume that we wi{l| represent a cube by an ftem whose datum
is the height of the gube, We may easl|y so|ve this nroblem by using
a recurslve procedure "fi!ndi",

13

L&

L

RECURSIVE BOOLEAN PROCEDURE findl (SET bset, INTEGER dlff;
REFERENCE SET ansi;
BEGIN INTEGER ITEMVAR newb;
FOREACH newb | newb € bset a (2(newb) S di?¢f) DO
IF (a(mewp) = diff) v findi(bsat~{nswb),dlff-alnewb),ans)
THEN BEGIN PUT newb IN answer }RETURN(TRUE) END}
DRETURN(FALSE)B
END;

dnWaver, now 1ot us cons/der a sllant|y differant oroblem, Suppose Wa
Wish t0 mimu|tgnecusly pu]ld tWo ToWers from g slngle sat of plogks,
calling "tipdd™ twige, flest with the entire set of blogks for for
the flrgt towar, then «|th the smalnlng wlocks for the gsegonc, wll|
mgt Work, Though <there Mmay aXiat MARY poss|ble subasts whish il
form the flrat towar, "findi" wi|| ajways raturn the same o136 Qven
thoush It Is possib|e to construct the second toWer onlv ifa
different subset of the blocks Were ghosen for the first tower, For
example, |f the sst of blooiks consisted of slzes 1, 4, and 5 and we
Were t0 construct towers of helghts 5 and 4, #¥indi" would construct
the flrst tower using blocks 1 and 4 and thus be unable to construct
the sscond tower,

Now let us see how we Would use mateh|ng procedures to overgome this
oroplem, Let us write the matching procedure 0 soive a single tower
problem [13],

MATCHING PROCEDURE find2 (SET bsetl INTEGER helght;
? SET ITEMVAR ans)}
BEGIN
RECURS;VE PROCEDURE aux (SET a1} INTEGER diff);
BEGIN INTEGER JTEMVAR newpi
FOREACH newp | newp € 32 A (0(pewp} S glte) DO
BEGIN PUT newb IN 3(ans)i
IF (8(ngwp)s d]ff) THEN SUCCEED
ELSE qux(si={nowp),dlff=a(newp))}
REMOVE newb FROM 8(ans)|
END;
END)

ans « NEW(())s COMMENT new {tem, The empty set is cdatumi}
aux(bset,helght)}
FAIL)

ENDI

To ocall the matching proocedure we would elmply have a FOREACH
stutement:

14

FOREACH ans | f} d2(b|ookget.molght,zns> Do
rintset(d(ans));

Thls is clear|y egujvalent tc the scluticn glven above for "findi",
However now consider the twc tower case:}

FOREACH apsi,ans? | findz(b|ocksof.helght1,ansl2A
andZ(blcckset-Btansii;he ght2,ans2) DO
printsets(dtansi),d(anse))}

This will find a solutlon If any ex|sts, because If, after finding a
sglution to the first tower, It |s Impossiple te find 4 sojution to
the second problem, we backup and flnd a different sciution to the
first tower and then try the seoond agalin,

An Interesting distinction between the programs for "flndi" and
"flpd2" may be found, Notice that "findi" cnly returns tc its caliler
after "unwinding” the recursion, thus allowing the answer set to be
constructed as the recursion Is balng "unwound" within a successtul
call. With "find2", however, the procedure may "return" or succeed
whije It Is sti|| deeply nested In pecursion und thus the answer set
must be cgnstructed before the next recursive call of "aux" s made,

We envislon that matechlng roccedures wlil be ugod to. simulate n=ary
relations, serve ag Yenera crs of moves or stra‘tegies, as well as

sirpcly ald In the oodi{ng of complex asscclative contexts,

INTERPROCESS COMMUNICATION

k comp|icated systems .such as the tanfo%d Hand Eve ¥atom where
Rere are many cocPeratind processes bressent, one would ? ko to have

a mechanism py which an occurrence In cne process can Infjuence the
fiow of contrcl In other processes, Such cccurrences fregqyent|y fall
Into several basic groups, with perhaps some dlstingulshing
information assoclated with each cccurrence of a given type, In
geslaning Interprocess communication facl|itles for SAIL we wanted to
make it easy for the user to distingulsh among happenings of the same
genera! type and to define for himse|f Just how each type ls tc be
hanoled, We have c¢hosen an "event" mechanism which is really a
falrly general messade prcoessor, Any ltem may be used as an "event
motlice”, op message, and each type of event In a oprecoram is
represénted by an item, Wlth each such event type, SAIL associates:

1, A "potlice quaye" of items which have been "caused" for this evant
tyDe.

2, A "walt gqueue” 0Of processes which are waiting for an event of this
type,
3, Prcceruras for manjpulating the gueues,

15

The two essential act]ons assoclated wlth any event type are
CAUSE(<event type>,<notine [tem >,<optlons>)

and
IMTERROGATE(Covent typed,<options>)

whepe, as o|sewhere, ¢options> may be left out If the dufault case is
desired,

The statement

CAUSE(typel,ntc)

woul|d cause SAIL to look at the walt aqueue for typel, I[f _the aueue
Is empty, then "nte" wWould be bput Into typel’s notice qusue,
Otherwise, a process would be removed from the walt aqueue and
reactivated, with "ntc" as the awalted iten,

1f a process executes the statement

1¢mve INTERRQGATE (typel)
then the flprst ftem in the notloe aueue for typel would b? remoyed
fror the queue and assigned to |temvae Itmv, [f the aqUeue 5 empty,

then itrv would be set to the specla| Item NJC, If a Dprocess wants
to walt for an event of a aglven type, It may do so, as in

[tmve INTERRQGATE(typel, WAIT)

In this case, !f the notice aueue [s empty, then the oprogess will be
suspended and put onto the Walt queue for typeil,

Similar|ly,
ltmveINTERROGATE(typel ,RETAIN)
causes the event notice to be retalned In the notice aqueue for typel.

Thls event mechanism should prove wuseful In problem solving
app|lcatlions in whijch processes are Sprouted to consider different
actions, An "or" node In a goal tree, for example, mlght be

represented by

SPROUT(pi,naI|(sucevt.bgards))l
SPROUT(p2,9|uelsucevt,boards))}

16

SPRUUT(p3,screw(sucovt,boards));
winne ~IN ERROGA"E(gucevesWALIT))
FOREA P | pe(pl:nd,p3) A p2nin
!

ner DO TERMINATE(D):

Wwhen a braneh discovers that |t has succeeded, It can axecute a
statemenrt |lke

CAUSE(suceves THIS_PROCESS)}

whlgh would gnnoynce success and cause Its parent to terminate its
Ies s ccess brothers.

Events glve us a meaps by which some dlsoovery Tade by one process
cah be made to "unstick"™ sSsome other Process ch has gotten into

trouble, Lets consider our too| getter again,

PROCEDURE too|._getter(ITEMVAR tno|_type)s
BEGIN
ITEMVAR tool}
FOREACH too! | tool€toolpox A type®toolStooltype 00
RESUWE(CALLER(THIS_PROCESS).tool)}
DO too|«INTERROGATE(tnol_faund,WAIT)
UNTIL typaetoo|Ztoo|-type;
RESUME(CALLER(THIS_PROCESS),¢00!);

END3
he EA H ement fa 0 f' a tool of the correct tyoe
%geﬁ toz R ter ?f mbgtsusgérd Q?I same é”ocess cuussg,an evgn%
of tvpe tool found, Us'ng the an ltem repreasenting tool a2s the event

notlice, Suppose that our vrocess "wanderer" has flnaj|y gotten a
chance to run (everything of higher prioplty being stuck) and that It
does, !n fact, stumble across a sorewdriver, which It knows to be a
king of too|, It might then do scmething |lke

QAKE typeethingsscrewdriver;
PUr thing IN tool._box}
CAUSE(too|_found,thing, TELL _EVERYONE+DONTSAVE):

Thls would cause every process walt ng on the eyent "tcol| found" to
be awakened, (If no process |s walting, the notice will not be saved

on the notlce gucue,) This would wake up whcomever calied tool_getter,
which would then see |f |t can use the "thing",
SR

€5°8Y%?tA" R®yome>Dases gh‘gsgouT °B% 43R8 b9'a 'R0 T§ 5 wn’
INYERROGA ¢ 7ts each event st, unfortunute) one wishes

17

w5

to wailt for ar oocurrence within a glven set of events, this doesn’y
work very well, sincu ap attempt to walt for one event type will keep
the ot=er types from belng seen, Therefore, SAIL aliows a oprocess to
ask about a set or |ist of event types directiy, as In

|tmveINTERROGATE(ev_type_I1s,WAIT+RETAIN)

A g W if i of
LEoHAILITE Leoudsouazsotn,10enahe Tost 1 o¥! HhyBtIatsle Lt (800 8
any of walt queue entries |s secviced (Al walt queue entrjes for
thls request w!ll be deletea.) If It Is necessary to kmow Jjust which
type was responsible for a 9lven notlce, the ootion SAY_yHICH may be

used., Suppose the statemant

|tmve INTERROGATE(ev_type_11s,HAIT+SAY_WHICH)

returns 1tem "notle", whioch was caused as an event of tyoe
catastEo he, ag lts value. Then the agsoclagion
EVENT YBEonotlcEcatastropho wil] be made by the system,

Thus ene "3y to program an "and" node wlthin process "foo" mlght be
somecthing |ike

SPROUT(pl,fetch(hammer,handl,sucevt, falieve));
SPROUT(p2, fetch(nall,hand2,sucevt,falleve));

SPROUT(pn, lookat(tvi,boarde,sucevt,feljevt))
FOR | « 1 STEP 1 untlil n DO
BEGIN
p=INTERRQGATE({(fallevtssucevt)),WAIT)}
IF EVENT_TYPEen=fa|lgvt THEN
BEGIN
MAKE fallure_causeefooSp}
FOREACH p | p € ((pl,p2).s.20n}) DO TERMINATE(p)!
CAUSE(foos_fallure.event,foo);
SUSPEND(foo)}
END;
ENDY
CAUSE(foos_success_event,fool}

Were, |t |s assumed that each process Is to take responslblliity for

making "|ife or death" declslons reguarding any subprocesses, As
soon as one uf th2 pl reports faijure, foo wii| terminate all {ts
"children® (whose appoinged esks haye become polingless) reoory ig¢s

own fallure, and suspend Itseff, 1f all the pl reocrt success, then
foo wil] do llkewise.

Events may bhe used together

wi matohing procedures to_ do .deferred
updating, as |s shown by the fo W

ng example, A matohinag orocedure

th
o

18

vay WaNt o make goms change to the data bess only [t thy rest of the

asscblng|ve contaxy o ¢hs FOREACH succesds,

A almo|e way of

Implementing this lg to have the matghlng procedurs soawn & procass
whigh wli| do the uedating, Tth*nrﬁulll wiil ga Inte avent walt, and

the event wl|| eonly be ﬂluli?
the FOREACH sucoedds, Conmld
erograt, For sach member of the susoest | lat, We
ran|ly undealrable bY ehegklng hls bank acocount.

the antlre ssmocintive context of
ar the fo|lowing gul |t=by=assoalation

flest nug 1+ ke in
1t he dgesn’t have

anough ronsy to belps ug we wll| put mnother bimckmark in gne flln ot

an¥ans who has &ny & soelation with Rim, unjess
sgsccintion with hls Is as an Informar (1n which
ba glvern & "negative® bjeck marki Whern & pRrgon
he then becomes a suspéct,

SET badauys) LIST suspecti
MATCHING PROCEDURE ||nk0d(BIND!NG 1TEMVAR x)}
BEGIN
PROCEDURE UPCATE}
BEGIN INTEGER ITEMVAR y. 1)
WHILE TRUE DO
BEGIN ¢+INTERROGATE(|inkedok,HAIT)I
PUT » IN badguysi
a(f)~a(f)=2)
FOREACH ¥y | ANY 8 x £ ¥ 00
BEGIN d(y)ed(y) * 1

that opearsgn’s oniy
cnge the Imk wlil
gets § Dbiack mErks

}
IF a(y) 2 5 THEN PUT v IN suspoct AFTER =}

END;

END)
ENDS

TEM
g-ﬁE&?R85&OUT(z-undate)l
FOREACH x | x ¢ auspect DO
SUCCEED}

TERMINATE(2)

FALTL)

END;}

[}
COMMENT main procedure execution;

FOREACH persons flink | | Inked(person)a(weaith
A Informer®personsfink 00

BEGIN CAUSE (! Tnkedok, f Ink)i
]
]

END;

19

(person)<lots)

This slrple axampie does of course not reaiy requlre elther mntch}ng
procedures or the _8yent machan!snm fo cause the uod!tlne, but the
technlaue it |ilustrates shouid be quite valuable In more compiicated
situations,

\ . _ .
aps 88 Ehs mzé"as ﬁxsztosammaf ther3uardoions éazemsﬁanf;a
they are not qulte right, For Instance, a process m ght want to walt
for a given event only |f no otber orocess s aiready walting for
that event, Instead of trying to provide a specla| optlon to cover
every possibie oontingency, we have Instead provided a set of queue
and process primatives with whioh the user oan wrlte h?s_ own CAUSE
and INTERROGATE ppecedures, To substitute his own orooedure for the
one provided by SAlL, the user makes an associatlon of the form

CAUSE _PROC®typeiZnew_cause_pro¢

Or

INTERROGATE PROC®typelZnew_Ini_proo

whepe tycel Is the event type and new_cause_pro¢ and new_lnt_proc are
procedure |tems bound to the substitute procedures, These procedures

Wil be run as "atomic" operations, and wili be ajiowed ¢to flnl?h
Without Interruption, In partlicular, any CAUSEs or .changes in
orocess status reguested by suoh a procedur® wij| not actually take

ojace until after the ppocedure exlts, Thls ninterrupt jeve|" turns
out to be quite usgful and permlts one to wrlte Interrust handlers
that look at & notice of some event, do what they can, and then
either just return or e|se cause an event that wiil trigger some
stronger condition,

20

CONCLUS]ON

Each of the feature dosoribod In thls papue, was Intended ? |?|ve
particuiar DrOTrnmm ng probiems, We have not yet had_sufflolent
practical experience with the new system ¢r say with GOrtITnty that
they are the the rlght ones, Thene |s a graat deal of work_ on these

problems In severa| |aboratorles and new 'SYUCS are belng raliged
freguentiy, We do feel, however, that the ba solutione suggested
here WI1| prove usgeful and that they do slonlfloantiy extend the

capabllltles of 2lgole|lke languages,
ACKNOWLEDGEMENT

Whlle the work described In this paper was bolnﬂ done, there has a|so
been a stan?;loant gf?ort at the Stansord 5y 1, Lab to proguoce & new

L]SP sYstem (LISP 70) which ajso 'udoa provlolona for multinle
processes, baoktracking, and other s mitar foatures, We would |lke
to thank the authors of thls effort, Horsoe Enea, Larry Teglor. and
Davld Smith for several Interesting oonvo‘altiona about f , { system,
A|thouSh the approaoh they have taken somou?ut d eront from
ours: these talks provided ue wlth severa| useful nolahtc.

21

REFERENCES

C11

(23
€3]

(41

€53

€6l

€73

sl

(91

Anderson, B,, "Programming Languages for Artificlal Intel|lgence:
the role of non=determinism,” School of Artiflolal
Intelllgence, Unlv, of Edlnburgh, Experimental
Programming Reports No,25,

Blrtwistle, G,,» "Notes on the SIMULA Language,"
Norwegian Computing Centre Publloation S=7, ADP I 4969,

PerkarDs ¥y et 8788 BARFETROR5" 15 June 1972,

Feldman, J, A,, and Rovne P. Dis "An ALGQL-Busod Assoclatlive
us

Lanquago." C.ACM 12,8 ugu t 1969), pp 439=449,
Feldman, J, A,s» and Sproull, R. Fyo"System S ort For the
Stanford Handeeys Sygtem," proo. seoond Al,

Sept. 1971, pp 183-189,

Hewltt, C,» "Procedura| Embedding of Kmnow|edge !n Planner,"
Proc, Second !JCAl, September 1971, pp 167-182,

McDermott, D, V,, and Sussman, G, J.o"ThO CONNIVER Referenoe
Manual|," MIT A, 1, Memo 259, May |972

OrﬂanICKo Eo Ino and C|..fy' Jo G.o "A D.t. StfucturO MOdel
of the B6702 Computer Svatem," SIGPLAH Notloes 6,2,
February 1971, po 83 « 145,

Swinehart s C, nd Sproul |,
StanfSrd Art'??olal I

Note No, 52,

Re Foo "SAIL Manual,”
gence

nece Laboratory Operatlng

22

